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Abstract

Two simultaneous sounds are pleasing if the ratio of their frequencies is a rational number with small numerator
and denominator. The octave interval denotes two sounds with ratio 1/2. It is impossible to perfectly subdivide
1/2 into a set of smaller intervals using only rational intervals. Various approximations (scales) are discussed.
Also, an analytic theory for music composition is presented.
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1 Introduction

Generally, we don’t think of mathematics when we en-
gage in music listening, and similarly we don’t think
about music when proving a theorem. Neverthe-
less, mathematics and music have been married by
Pythagoras, and never got divorced. During the course
of subsequent history, new music theories, ideas and
notation have been invented by music theorists. Of-
ten, the goal of these systems was to characterise con-
sonance and dissonance, and divide the interval of an
octave into intervals that maximise consonance. The
ultimate intention of these theories was to define rules
according to which pleasurable music can be created.
The rules of counterpoint developed during the Re-
naissance are one example of such system (sec. 5.1).
In the twentieth century, more complex mathematical
theories were invented. At the end of this historical
overview, I introduce one of such theories: Composi-
tion with Pitch-Classes (sec. 6).

2 Psychology and philosophy

There are several qualitative aspects that are shared
by mathematics and music[1]. In both disciplines there
are no rules which specify exactly what to do in order
to succeed (in proving a theorem, or in creating beau-
tiful music). At most, there are only guidelines. These
come in the form of new ideas or “hunches” that may
be tried, as well as past experiences or “tricks” that
have worked before and are worth a shot again.

As well, both processes require the brain to organ-
ise distinct ideas and experiences into one logical struc-
ture so that suddenly disconnected objects fall into
place and “everything becomes obvious” [1]. For ex-
ample, consider a piano player who learns a new piece
one hand a time [1]. The music pattern may not be
obvious during this process, since the music is designed
to be played with both hands. Later, when the player
had enough practice with separate hands and has de-
cided to play both hands at the same time, the music
pattern still may not be incidentally obvious. How-
ever, with additional practice, the notes fall into their
correct places, so that the two melodies match, and
suddenly music comes out! A similar process happens
to a student of mathematics who studies many of its
diverse fields separately (e.g. graph theory, statistics,

linear algebra). Only at the end of the journey, he/she
realizes that all of the seemingly unrelated disciplines
are connected in intricate ways.
Similarly with mathematics and music: although

at first glance they appear unrelated, their connection
is evident upon closer inspection.
It is interesting to note that many famous math-

ematicians were also musicians or music theorists. In
fact, treatises on music were written by Pythago-
ras, Ptolemy, Euclid, Boethius, Cardan, Huygens,
Reimann, and Euler. For example, Euler published
“Tentamen novae theoriae musicae” in 1739, in which
he tried to make music [2]

... part of mathematics and deduce in an
orderly manner, from correct principles,
everything which can make a fitting to-
gether and mingling of tones pleasing.

3 Ancient Greeks

The fact that mathematics and music are related
was clear to the Greeks. Music was included in the
“quadrivium”, subjects that are driven with logic,
namely: number theory, geometry, astronomy, and
music [3].

3.1 Pythagoras: The Father of Music

Theory

The link between numbers and music was observed by
Pythagoras (585-500 BC) by analysing the vibrations
of strings of various lengths.
Imagine a taut string that is plucked such that it

vibrates with frequency a (so as to produce sound). If
we press with a finger at the midpoint of the string,
so that the string would continue to vibrate in each of
the produced halves, the frequency of the vibration of
the string in each of the halves will double because the
wavelength has decreased by a factor of two. In other
words, the new frequency of the string vibration is
2a. The frequency ratio between the new sound to the
old sound is 2/11. Now imagine a similar experiment,
but now we fix the string at two points, such that the
string is divided into three equal parts. The original
frequency a now triples for each of the segments. The
frequency ratio between the notes 2a and 3a is 3/22.
Pythagoras noticed that if the ratio between any two

1This interval is called octave or ’diapason’.
2This interval is called a fifth, or ’diapente’. A fourth is 4/3, also called ’diatessaron’.
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note frequencies can be represented by a rational num-
ber p/q, where p and q are small integers, then the two
notes are consonant. That is, if voiced one after the
other they would create a pleasing change in sound3.
Consider another scenario in which a woman is

swinging a wire that connects a telephone handset and
a telephone. When the woman starts swinging the wire
slowly, the whole wire moves up and down. If she pro-
ceeds to swing increasingly faster, for a moment the
wire will become “confused”, but soon it would divide
into two parts, with a stationary node in the middle
(so that the whole waveform would look like one cy-
cle of a sine wave). In this scenario she has not fixed
the string in the middle by holding it, yet achieved
the same frequency doubling result as in the previ-
ous example. If she continues increasing the speed of
swinging, the string will divide into three, then four,
etc.equal segments, each time the frequency increasing
by an integer factor relative to the initial frequency a.
These new frequencies are called overtones or harmon-

ics of the base frequency a.
What Pythagoras did not know is that when a taut

string vibrates, it vibrates at all of its overtones at the

same time! 4. However, the higher the overtone the
smaller is the intensity of the vibration in that fre-
quency. The sum of the vibrations of the overtones,
that is, what we hear when the string is plucked, is
called the ’timbre’ of the musical instrument. It is
therefore only possible to hear pure vibrations of a
particular frequency (without overtones) with a use of
a computer.
Thus, in practice, when we hear a sound, we auto-

matically hear the sound intervals 1/1, 2/1, 3/1, 3/2.
From here, it is now clear why melody 1/1, 3/2, 2/1,
3/1 sounds pleasing to the ear. It is almost as if we
played only the note 1/1 four times.

3.2 The Tetraktys

Pythagoras and his followers have cherished the
“tetraktys [quaternary] of the decad”, the fourth tri-
angular number 10 = 1 + 2 + 3 + 4, which can be
represented with the following triangle:

*

* *

* * *

* * * *

This symbol stood for the four elements: fire, wa-
ter, air and earth, and was the symbol upon which
Pythagoreans swore their oaths[3].
In the tetraktys, the basic string length ratios are

found, 2/1, 4/3, 3/2, etc.From [4] (p.12), a later
Pythagorean Theon of Smyrna (2nd century A.D.)
writes,

The importance of the quaternary...is great
in music because all of the consonances are
found in it. But it is not only for this rea-
son that all Pythagoreans hold it in high-
est esteem: it is also because it seems to
outline the entire nature of the universe.
It is for this reason that the formula of
their oath was: ”I swear by the one who
has bestowed the tetraktys to the coming
generations, source of eternal nature, into
our souls.” The one who bestowed it was
Pythagoras, and it has been said that the
tetraktys appears indeed have been discov-
ered by him.

3.3 Consonance and Dissonance

Throughout the history of music, the ideas of con-
sonance and dissonance have undergone dramatic
changes. In the Ancient Greece, consonant intervals
were considered to be fourths, fifths, octaves and com-
binations: fourth-octave, fifth-octave, octave-octave,
and in addition, any octave compounds of the above
mentioned intervals.
In his work “Harmonic Introduction” (first century

AD), Cleonides, supporting the views of Aristoxenus,
writes [4] p.13,

Of intervals the differences are five, in that
they differ from one another in magnitude,
and in genus, and as the symphonic from
diaphonic [dissonant], and as the compos-
ite from the incomposite, and as the ra-
tional from the irrational...The symphonic
intervals are the diatessaron, diapente, dia-
pason, and the like [presumably the octave-
compounds of these]. The diaphonic in-
tervals are all those smaller than the di-
atessaron and those lying between the sym-
phonic intervals...

3Greeks didn’t consider voicing the notes simultaneously. History had it that only a thousand years later did the birth of
polyphony (playing of simultaneous sounds) occur.

4But Rameau realized this fifteen centuries later.
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3.4 The Diatonic Scale

In loose terms, the diatonic scale is a division of an
octave into seven intervals. The modern diatonic scale
now corresponds to the white keys of the piano (Figure
3.4) which uses an equal tempered tuning, see section
5.4. Up until the sixteenth century the tunings for the
diatonic scale were in just intonation, a system where
each interval is represented by a rational number.

The notes in the diatonic scale are denoted by let-
ters A,B,C,D,E,F,G. Symbols # and b, called sharp
and flat, respectively, modify the pitch of a note. A
sharped note is raised half a step, and a flattened note
is lowered a half-step.

In general, the precise frequencies of these values,
and exactly by how greatly sharps and flats change
them, remain undefined. These values are given a par-
ticular meaning upon the choice of scale or tuning.

3.5 Ancient Pythagorean Tuning

Observing the connection between numbers and
sounds, Pythagoras went ahead to create a tuning for
the diatonic scale based only on combinations of fifths.

The ancient Pythagorean tuning is the de-
scending scale with notes 5: 1/1, 8/9, 27/32, 3/4,
2/3, 16/27, 9/16, 1/2[6]6. Note that all ratios in a de-
scending scale are less than 1. Also, notice that all in-
tervals involved in this tuning can be created by com-
bining (multiplying) intervals 8/9 (called ’second’ or
’tone’) and 243/256 (called ’hemitone’).

Most likely, Pythagoras has produced this scale in
the following manner. He started with a root note,
and produced ascending and descending fifths, while
transposing them in order to keep them in the same
octave (i.e multiplying them by 2/1 (transpose up) or
dividing them by 2/1 (transpose down), so that the
value of the ratio is always at least 1 and at most 2).

Original Fifth Transposed Fifth
27/8 27/8
9/4 9/16
3/2 3/4
1/1 1/1
2/3 2/3
4/9 8/9
8/27 16/27

A reorganisation the notes in the right column pro-

duces the Pythagorean scale.
Finally, notice that two hemitones don’t produce a

second,

(
256

243
)2 ≈ 1.110 <

9

8
.
The intervals descending between consecutive notes

in the scale are: tone, hemitone, tone, tone, tone,
hemitone, tone. Compare this scale to the Medieval
Pythagorean tuning in Section 4.3.
The Pythagorean tuning, in a slightly modified

form, has lasted for two millennia, until it was replaced
by the Equal Tempered Tuning as well as the just in-
tonation tuning developed by Ptolemy (but forgotten
and rediscovered only during the Renaissance!).

3.6 The Greek Modes

In Ancient Greece the word “mode” stood for a
scale [7]. Each mode was a rotation of the inter-
vals {9/8, 9/8, 256/243, 9/8, 9/8, 9/8, 256/243}. Since
there are seven notes here, each mode could effectively
be the definition of the diatonic scale.
The lydian mode is one particular tuning of the

diatonic scale which corresponds to the white keys on
the piano, starting from F and ending on F (roughly;
see section 5.4).

3.7 The Tetrachord

The tetrachord, which literally means “four strings”
was the basic scale unit of Ancient Greece. The first
and fourth strings were always tuned a fourth apart.
The two strings in the middle depended on the “genus”
and mode of the music. There were three kinds of gen-
era7: the diatonic, chromatic, and enharmonic.
In the diatonic genus, the two middle intervals were

two tones, and a semitone. The chromatic genus com-
prised a minor third (three semitones), and two semi-
tones. In the enharmonic mode – (major third) two
tones, and two quarter tones.
However, in practice these tunings probably were

not exact [8], since

Prior to Pythagoras there appears to be
little evidence of a theoretical basis for
the tuning of musical scales. Pythagoras

5In Ancient Greece all scales were descending.
6This notation means, for example, that the second note frequency is 9/8 times smaller than the base (root) note
7Note that “genera” is the plural of “genus”
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Figure 1: Note that in just intonation tunings the sharp and a flat is not necessarily the same (e.g D# is
not the same as Eb). The modern piano is tuned according to the equal tempered tuning (section 5.4). This
diagram is taken from [5].

was involved with the science of harmon-
ics which was separate from the practical
art of music. In the absence of a theoreti-
cal basis for the tuning of scales the actual
tuning can only have been empirical and
probably varied widely.

3.8 Ptolemy’s Tuning of the Diatonic

Scale

The modern diatonic scale tuning using just intona-
tion was developed by Ptolemy[9] in the second cen-
tury AD. This scale is formed by three major triads,
note triples with frequency ratios 4 : 5 : 6. The major
triads are C,E,G;, F,A,C;, G,B,D. All the intervals
in this scale are a combination (product) of the inter-
vals 9/8 = 1.125, 10/9 ≈ 1.111 and 16/15. The first
two are called whole-steps, and the last—a half-step,
or a semitone. Note that two half-steps are larger than
one whole-step, (16/15)2 ≈ 1.138.
An alternative way to describe this scale is with the

use of tetrachords. In this interpretation, the octave
(2/1) is divided into a tetrachord, followed by a second
(9/8) (aka whole-tone), followed again by a tetrachord.

The total interval of the tetrachord is a fourth (4/3),
and a fourth combined with a fifth make up an octave
((4/3)× (3/2) = 2/1). This is summarized visually as,

octave = fourth | second | fourth

octave = fourth | fifth

Therefore, the definition of a second must be the dif-
ference between the fourth and the fifth! That is,
(3/2)/(4/3) = 9/8.

The Ptolemaic tuning was ignored during the Me-
dieval Period, and resurfaced again during the Renais-
sance [6]

The diatonic scale is of ancient origin,
but the particular tuning incorporated into
modern just intonation (see below) is due
to Ptolemy... It was rediscovered by Gaffu-
rio in the late 15th century, from whom
Zarlino learned about it, and it has re-
mained the basic scale used in western mu-
sic ever since (Jeans 1938, p.164).

6
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3.9 Archytas: Dividing the Consonant

Intervals Further

Another Pythagorean philosopher, Archytas of Taren-
tum (428-347 BC), who is most known for construct-
ing the first flying machine[10]8, observed in his work
“Proportions: Arithmetical, geometrical, harmonic”
that it is not possible to divide the fifth (3/2), fourth
(4/3), the octave (2/1), and the second (9/8), or in
general an interval of the form (n + 1)/n, into two
equal intervals using rational numbers. That is, there
exists no solution to,

(
a

b
)k =

n+ 1

n

for k > 1, a, b, k, n integers.
Archytas also observed that the product of a har-

monic mean of two elements with the arithmetic mean
of the same two elements is equal to the square of the
geometric mean of the same two elements. That is, for
x < y, the harmonic mean h satisfies9

h− x

x
=

y − h

y

or equivalently,

h =
2xy

x+ y

the arithmetic mean m,

m =
x+ y

2

and the geometric mean g,

g =
√

xy

So that g2 = hm. It can be shown that a > g > h.
Thus, by using this property, Archytas was able

to divide the fifth 3/2 into the product of 5/4 (major
third) and 6/5 (minor third), so that the fifth is di-
vided into 6 : 5 : 4. Similarly, the fourth 4/3 can be
divided into the product of 7/6 and 8/7 so that the
fourth becomes divided into 8 : 7 : 6. The interval 7/6
can be thought of as a shrunken minor third, and the
interval 8/7 as an enlarged whole tone [11].
The geometric beauty of this system lies in the fact

that Archytas used different kinds of averages to create
an almost “average” or “equal” division of the inter-
vals.

3.10 Problems with Just Intonation

Assigning note frequencies according to rational num-
bers introduced some problems. For example, if we
play twelve fifths in a row (twelve notes, between each
adjacent pair the interval is a fifth, 3/2) we would get
an interval (3/2)12. If we take seven octaves, we get
(2/1)7. The interval between the two resulting notes
is10,

(3/2)12

(2/1)7
=
312

219
=
531441

524288
= 1.013643265

i.e. the two notes are almost the same, but not ex-
actly, and the two notes will not sound pleasurable.
This dissonance (sound interval that hurts the ear) is
called “comma of Pythagoras”.

Curiously, as it was observed by the most eminent
of the Pythagorean school, Philolaus of Tarentum (or
Croton), who lived in fifth century AD [12] [11], two
heminotes 256/243 and a comma of Pythagoras make
up the whole tone 9/8,

(
256

243
)2 × 531441

524288
=
65536

59049
)× 531441

524288
=
9

8

Listed below are problems similar to the comma of
Pythagoras. Here a major third is 5/4, and a seven-
teenth is 5/1 (a seventeenth is equal to two octaves
and a major third).

Comma of Didymus: (four fifths) vs. seventeenth.

Diesis: (3 major thirds) vs. octave

Shisma: (8 fifths and major 3rd) vs. 5 octaves.

In the 16th century, music theorists have attempted
to fix the comma of Didymus and comma of Pythago-
ras, by changing the definition of a fifth, with the in-
vention of the Mean Tone Scale (described in section
5.2).

Another problem with just intonation is that it is
not possible to transpose the music to a different start-
ing note. Such transformations can only be possible
if the intervals between adjacent notes are all equal.
Equal interval tunings are discussed in section 5.4.

8 Archytas’ machine, called “pigeon”, invented in 425 BC, was powered by a jet propulsion system, and in one experiment flew
200 meters. However, once it landed, it could not take off again [10].

9The general harmonic mean for elements x1, x2, . . . , xn satisfies 1

h
= 1

n
(
∑

1

xi

).
10Every interval is also a note; simply, we assume that the root note is the lower point, and the upper point is the note of

interest, such that the interval between the two notes is equal to the interval in question.

7
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3.11 Performed Music in Ancient

Greece

Contrary to the wealth of theoretical foundations that
Ancient Greece has contributed to music, almost no
record of the performed music has been preserved [13]
p.4. It is known, however, that most of the music was
improvised. Also, several instruments did not play si-
multaneously.
Surprisingly, Greek artists did not consider the

value of music on its own merit; music was played al-
ways in combination with poetry reading. Since their
poetry often conformed to a beat structure, the ac-
companying music was played to that natural beat.

4 Medieval Theory and Practice

The knowledge of ancient Greek music theory be-
came available to medieval music theorists through the
treatise “De Institutione Musica” written by Boethius
(480-524 AD).
In medieval times, the west became Christian.

Consequently, this has affected the music practice. For
the next fifteen centuries the musical scene was divided
into two categories: sacred chant (religious musical
prayer) and secular (non-sacred, social, popular).

4.1 Sacred Chant

There were two categories for Christian service, the Di-
vine Office and the Mass. The first was inherited from
the Jewish Tradition, in which a community prays col-
lectively, daily, every few hours. This tradition in-
volves the singing of psalms (from Old Testament Book
of Psalms), hymns and praise songs. The other ser-
vice, called the Mass, is the most important Christian
service, which symbolizes the Last Supper. In it the
bread and wine is blessed and offered.
The chants are recorded with a specific form of no-

tation. Unlike in the standard music notation, where
five lines are used for the staff, only four are used for
chant recording. Also, instead of oval-shaped symbols
for the notes, square symbols are used. In general,
the duration of the notes (called ’neumes’ in this con-
text) is the same. The chant melodies usually remain
within one octave, and the chant text is written under
the neumes. When every syllable corresponds to a its
own neume, the section is called syllabic. When sev-
eral neumes are sung to the same syllable, the section
is called “melisma”.

As time progressed, modifications were made to the
existing and documented chants by the process of trop-
ing, and sequencing. The three kind of troping pro-
cessed were: text added to existing melismas, music
extending melismas or adding new ones, new words
and music added to a regular chant. Sequencing on
the other hand refers to writing new words under long
melismas, to for either artistic reasons, or to aid mem-
orizations. Although troping was supported by the
Church, most sequences were banned.

4.2 Secular Songs

Bordering the fine line between religious and secular
was the “conductus”, a style of song on sacred and
non-sacred subjects, with metrical verses written in
Latin, sung with a rhythmic pulse (analogous to a
march). Another type of secular song was known as
the “chanson de geste”, an epic narrative poem about
national heroes, sung to a simple melody. The people
who sang chansons de geste were called “jongleurs” or
“ministrels”, a class of professional musicians that ap-
peared in the tenth century. Finally, “troubadours”
were poet-composers living in the South of France,
who, influenced by Arabic love poetry, created beau-
tiful love ballads.

4.3 Medieval Pythagorean Tuning

By using the Pythagoras’ method of combining fifths,
medieval theorists developed a tuning based on
ascending fifths only (recall that the Pythagoras
used both ascending and descending fifths, section
6). The produced fifths were transposed down
as many octaves as needed in order to keep the
range within one octave. The resulting scale is
1/1, 9/8, 81/64, 4/3, 3/2, 27/16, 243/128, 2/1[6].

Again, note that all intervals involved in this tun-
ing can be created by combining (multiplying) inter-
vals 9/8 = 1.125 (second) and 256/243 (hemitone).

The intervals between successive note pairs are as
follows: tone, tone, tone, hemitone, tone, tone, hemi-
tone. Compare this to the Ancient Pythagorean Tun-
ing described earlier in Section 6.

Note that this sequence of intervals corresponds to
the intervals between the notes F,G,A,B,C,D,E, F ,
as shown on the the diagram of the piano keyboard in
Figure 3.4.
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4.4 Guido of Arezza

Guido of Arezza (990-1050) significantly contributed
to the music theory of the Medieval Ages. Guido used
hexachords (chords containing six notes) to create a
scale called “Gam”11

4.5 Note Names

Interestingly enough, before Guido, the notes did not
have names, so the only way to practice singing a note
was to sing it with some poetry. Guido had proposed
the names “ut,re,mi,fa,sol,la” to name the notes in
his hexachords (cords of 6 notes each, with intervals
tone,tone,semitone, tone,tone12). Guido took these
names from a hymn called “Ut queant laxis”, with
these words:

Ut que-ant la-xis re-sona-re fi-bris
Mi -ra ge-sto-rum
fa-mu-li tu-o-rum
Sol-ve po-lu-ti
La-bi-i re-a-tum
San-cte jo-an-nes

Note that the song phrases begin with the sounds as-
signed to the corresponding notes to which they were
sung in this hymn. These names are still in use today,
with ’ut’ changed into ’do’, and ’ti’ added for the note
B, taken from the word ’po-lu-ti’ above.

4.6 Guido’s Hexachord

In the Medieval Pythagorean tuning as described
above (section 4.3), the hexachord of Guido can be
taken to be the following chords: {G,A,B,C,D,E},
{C,D,E, F,G,A}, {F,G,A,Bb,C,D} (here Bb is de-
fined by decreasing B by a hemitone). The hexachord
beginning on G was called hard or “durum”, due to the
natural B (that is, not flat), and the hexachord begin-
ning on G is soft or “molle”. The hexachord starting
on “C” was called natural.
The “Gam” scale was based on seven hexachords

which overlapped to produce a range of two octaves
and a major 6th. Guido’s Gam scale survived until
1500s, when it was replaced by a system of major and
minor thirds (developed due to Ptolemy, and then re-
discovered; see sec. 3.8).

4.7 Gregorian Modes

The Gregorian modes are named after Pope Gregory
II (reigned 715-31)[13] p.16, and use some of the
names of the ancient Greek modes. However, they are
not the same: they are rotations of a diatonic scale
C,D,E, F,G,A,B. They are called Dorian, Phry-
gian, Lydian, Mixolydian, Aeolian, Locrian, and Io-

nian which start on notes D,E, F,G,A,B,C respec-
tively (note that Ionian is another name for the orig-
inal diatonic scale). The last three names have been
defined and added later by Henricus Glareanus, in his
book “Dodecachordon” (1547).

Glareanus has also added a modified Dorian and
Lydian modes, in which aB is replaced withBb. These
modifications are important, since for example, the
modified Lydian mode is equivalent to the diatonic
major tuning describe later in Section 4.8. Interest-
ingly enough these modifications have been ignored
for many centuries.

The first note of the above modes, about which the
rotation is taken is called ’final’. These modes were
called “authentic”. A variation of these modes, with
the same root name, but with a prefix ’Hypo’ (e.g. Hy-
podorian) are the rotations such that the final note is
in the middle, that is, a fourth note of the scale (which
also happens to make a fourth with the first note).

4.8 Diatonic Major Tuning

This important tuning can be achieved from the Me-
dieval Pythagorean Tuning (sec. 4.3 by transposing all
the notes by a fifth down, (i.e. multiplying by 2/3). As
for the notes F,G,A,B (they are 1/1, 9/8, 81/64, 4/3
when F is the root), after transposing them down a
fifth, transpose them up an octave (so as to remain
within one octave’s range).

If we order the notes of the scale
F,G,A,B,C,D,E with intervals 1/1, 9/8, 81/64, 4/3,
3/2, 27/16, 243/128, 2/1 as C,D,E, F,G,A,B with
intervals 3/2, 27/16, 243/128, 2/1, 1/1, 9/8, 81/64, 4/3,
3/2 and then perform the above transformations, we
will get 9/8, 9/8, 256/243, 9/8, 9/8, 9/8, 256/243 which
is the major diatonic scale.

Note that this new scale which starts from C is in
fact a “rotation” of the intervals in the F scale. This

11From this name came the saying “running the gamut”. Literally it means to play all notes of the scale.
12In equal temperament, introduced lower, tone is the interval 21/12. In just intonation, tone is 9/8 and semitone is whatever

decided by the tuning, but approximately half of 9/8
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is also suggested by the distribution of the piano keys
(fig. 3.4).

4.9 Polyphony

In the ninth century, the first experiments with
polyphony, simultaneous sounding of notes, began in
double voice singing, called organum. In previous
cases, any singing in unison has occurred for notes
being either exactly the same frequency, or octaves
apart. In the ninth century organum, new ideas in
chant singing, for simultaneously voicing fourths and
fifths, were born.
Polyphony began in the Church liturgy, as a modi-

fied process of troping (described earlier in section 4.1).
Now, instead of writing new text under the neumes
(notes), a new voice was written. The new voice con-
sisted of notes of the original voice transposed either a
fourth or a fifth down, an octave, or unchanged. This
new polyphony is called the “Early Organum”.
The polyphonic evolution of the plainchant (sa-

cred chant) has reached its highest at the Notre Dame
Cathedral which was build at the soaring Gothic style
of the twelveth century.
In addition to polyphonic singing, The Notre Dame

Organum produced a breakthrough in rhythmic nota-
tion. Recall that since rhythm was usually defined
by the text of a chant, it was implicit. Now, explicit
rhythmic styles were developed.
These new rhythmic styles were developed by fa-

mous composers Leonin (1135-1201) and Perotin13.
The rhythms developed by them were six modes, or
templates. For example, the first mode is “long,
short”; the second is “short, long”, the third one is
“long-short, short, long”, and so on. Here the time of
“short” is half the time of “long”.
Perotin and Leonin have also developed the genre

called “Motet”, which became the standard for both
sacred and polyphonic music. The voice structure of
the motet can be related to the Gothic structure of the
buildings that were built during that period, particu-
larly the Notre Dame Cathedral, where the motet was
born[13]. In the Gothic style, the lowest arches contain
smaller arches on their maxima, and the smaller arches
themselves contain smaller arches. This is done in a
symmetric fashion, so that the second level of arches
go in pairs (every bottom arch holds a pair of arches),
and third level arches go in triples (every second level

arch-pair holds a triple-arch). In a similar way, a motet
is structured. Usually sung in three voices, the motet
has lower voices supporting faster middle voices, which
in turn support ever faster higher voices.

4.10 Consonance and Dissonance

In the Medieval Times, the definition of consonance
and dissonance was further developed. Boethius
have categorized the relationship between intervals
into three categories: “equisonae”, “consonae”, and
“unisonae”. By unisonae he meant two notes played
at the same frequency (i.e. exactly the same notes), by
equisonae or identical – notes that are octaves apart,
and finally by consonae – diapente (fifth) and diates-
saron (fourth). Boethius did not state if the notes are
to be played together or one at a time.

In the tenth century, Flemish monk, composer and
writer Hucbald (840-930) has redefined these terms. In
his system “aequisonae” are notes that are either the
same, or octaves apart, and “consonae” are all possi-
ble consonances (diatessaron, diapente, diapason (oc-
tave), diatessaron-diapason, diapente-diapason). Also,
Hucbald makes a distinction between simultaneously
played notes and separately played notes. In his ter-
minology, consonance refers to simultaneously played
notes, while “intervallum” or “spatium” refers to a
melodic interval [4] p.17.

Subsequent modifications were made by John of
Galrand in his treatise “De musica” (1100 AD). John
categorized the consonances and dissonances into three
types in each case. For the consonances, the three
types of concords (consonant chords) are perfect, in-
between, and imperfect. Similarly, for the discords:
there are perfect discords, in-between discords and im-
perfect discords.

The perfect concords are octave and unison (the
two voices can not be distinguished by ear), the in-
between are fourth and fifth, and the imperfect are
third (major: 5/4 and minor: 6/5) and the sixth (ma-
jor: 5/3 and minor: 8/5) (the voices are clearly distin-
guishable by ear in these intervals).

Conversely, the perfect discords are semitone, tri-
ton, and ditone with diapente (major seventh), the
imperfect – the ditone and diapente, and semiditone
with diapente. Finally, the in-between intervals are
the tone and semitone with diapente.

13 Exact birth and death dates are unknown, but he has most likely was born in the middle of twelveth century, and dies in the
beginning of the thirteenth century [14].
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5 Renaissance

The development of the Motet in the twelfth cen-
tury helped to carry the polyphonic ideas to the Re-
naissance of the fifteenth century. With polyphony
becoming established, the fourteenth century empha-
sis of music shifted from melody to harmony and
counterpoint (tension). With this change came an
increasing use of intervals of imperfect consonances,
namely, thirds and sixths (equivalently, major and mi-
nor thirds).

5.1 The Rules of Counterpoint

In the fourteenth century, a new system of consonance
classification has emerged. The six categories intro-
duced by John of Garland were now reduced to three:
“perfect consonances”, “imperfect consonances” and
“dissonances”. Now the fifth has been elevated from
imperfect consonance to perfect, and major and minor
sixth became imperfect consonances (which roughly
corresponds to the in-between category of John). All
other intervals are dissonances.

A special case is the fourth. Surprisingly, while be-
ing ranked as the first of the perfect consonances in the
past, it is now treated as a special kind of dissonance
or consonance. This is indeed very puzzling!

In his book “Writing on Music”, Part II (1574), the
famous mathematician Girolamo Cardano (1501-1576)
(aka. Jerome Cardan) assigns the fourth to a special
category of “median” intervals, ranked after “pluper-
fect”,“perfect”,“imperfect” intervals–but before the
dissonances–in order of decreasing consonance[4] p.46.
His “median” category includes intervals that are dis-
sonant in themselves but consonant in their combina-
tion.

This new bias towards the fourth apparently was
not supported theoretically, but instead was a result
of several centuries of trial and error [4]p.46,47. In [4]
p.48, James Tenney suggests that the nature of the
dissonance of the fourth may lie in the analysis of its
harmonics (the overtones).

Independently of reasons for not accepting the
fourth into consonance, the newly established classifi-
cation system of intervals gave the terminology to state
a set of rules for composing pleasing music, known as
“counterpoint” [4] p.40,46. The goal of these rules was
to guide composers to correctly balance tension with
release. The rules are as follows:

1 A piece should begin and end with a perfect con-
sonance.

2 According to Cardan [4] p.46,

...when ambiguous intervals are used
in the lower voices or in a two-voice
composition, they dissonate in the
same way as in the first rule by up-
setting the composition’s relationship,
for they become dissonant sounds.

3 Consecutive parallel perfect consonances of the
same kind are to be avoided.

4 However, consecutive imperfect consonances can
be used freely.

5 Stepwise and contrary motion is preferred.

In his book “The Art of Counterpoint” (1588)
[4]p.42, Zarlino commented on the importance of dis-
sonant intervals that

...intervals that are dissonant produce a
sound that is disagreeable to the ear and
render a composition harsh and without
any sweetness. Yet it is impossible to move
from one consonance to another...without
the means and aid of these intervals.

Again, he adds later that

...every composition, counterpoint, or har-
mony is composed primarily of conso-
nances. Nevertheless, for the greater
beauty and charm dissonances are used, in-
cidentally and secondarily. Although these
dissonances are not pleasing in isolation,
when they are properly placed according
to the precepts to be given, the ear not
only endures them but derives great plea-
sure and delight from them...

5.2 The Mean Tone Scale

In the sixteenth century, with the new ideas of conso-
nance and dissonance, Pythagorean tunings also were
questioned. New tuning system systems started to
emerge.
One of the new tunings is the Mean Tone Scale

that was invented to eliminate both the comma of
Didymus, as well as the comma of Pythagoras. In
the comma of Didymus, four fifths vs. seventeenth,
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we have (3/2)4/5 = 81/80. By changing the definition
of fifth from (3/2) = 1.5 to 51/4 = 1.495348781, we
remove the problem, so that the ratio in question be-
comes 1/1. The new type of “fifth” is called a mean
fifth.

However, the Mean Tone Scale scale introduces a
new type of dissonance, called a “wolf fifth”. See [15].

5.3 Other Just Tunings

Extensions were made to the diatonic tuning to in-
clude the rest of the flats and sharps so as to pro-
duce the Chromatic Scale consisting of 12 notes. Also,
Franchino Gaffurio has uncovered the just tuning of
the diatonic scale invented earlier by Ptolemy (see 3.8),
but being too conservative opposed it [16]. It was Lu-
dovico Fogliano who published it in “Musica Theorica”
(1529) and Zarlino who published it in “Intutioni Ar-
moniche” (1558).

Since the Ptolemaic tuning used major and minor
thirds14 in its triads (notes in ratio 4 : 5 : 6), this
scale was better suited for the new ideas of consonance
and dissonance of the Renaissance, as compared to the
Pythagorean tuning.

Also, like Archytas of Ancient Greece (sec. 3.9),
Zarlino has observed the relationship between the har-
monic and arithmetic means and interval subdivisions.
P. A. Fraser comments [16],

Zarlino observed that the arithmetic mean
3 between 2 and 4 divides an octave into a
fifth and a fourth, 2 : 3 : 4. (Or 6 : 9 : 12.)
Alternatively, the harmonic mean 8 be-
tween 6 and 12 divides the octave into a
fourth and a fifth, 6 : 8 : 12. Similarly,
the arithmetic mean 5 between 4 and 6 di-
vides a fifth into major and minor thirds,
4 : 5 : 6, whereas the harmonic mean 12
between 10 and 15 divides the fifth into
minor and major thirds, 10 : 12 : 15. Fur-
thermore, the arithmetic mean of a major
third, 4 : 5 or 8 : 10, divides it into major
and minor tones, 8 : 9 : 10. Zarlino saw
this result as ’truly miraculous’.

5.4 The Equal Tempered Scale

To alleviate the problems connected with just intona-
tion tunings (sec. 10), a new kind of tuning based on
exponents has emerged. This new tuning is called the
Equal Tempered Scale.
Suppose we want to divide the octave 2/1 into

M equal intervals a. Then, combining a with itself
M times, must give us 2/1, namely, aM = 2. So,
a = 21/M . We want as many notes in our scale to fall
as close as possible to notes with frequencies equal to
ratios with small integer numerators and denomina-
tors. Figure 15 shows that choices M = 12, M = 19
and M = 31 are reasonable. Western music adopts
M = 12.
The first to investigate the idea of a tuning based

on a subdivision into equal intervals was Vincenzo
Galilei (1525-1591), the father of Galileo Galilei[11]15.
However, because he tried to use rational numbers (in
particular the interval 18/17), it did not work (see sec-
tion 8 for the impossibility of subdivision of (n+1)/n
into equal rational intervals). However, the system
based on semitones equal to interval 18/17 is still in
use today for the tuning of the lute, the viola, and sim-
ilar kind of instruments[18]. In this system, the octave
is twelve semitones, the fifth is seven semitones, and
the fourth is five semitones.
It was the Dutch mathematician and engineer Si-

mon Stevin (1548-1620) who came up with the idea of
using uniform steps of size 21/12. Jay Murray Barbour,
in his book Tuning and Temperament (Michigan State
College Press, 1953), remarks about Stevin’s achieve-
ments in music[18],

In his days only a mathematician (and per-
haps only a mathematician not fully cog-
nizant of contemporary musical practice)
could have made such a statement...It is
refreshingly modern, agreeing completely
with the views of advanced theorists and
composers of our day.

Fokker adds in [18],

He [Stevin] had no bump for the plain sim-
plicity of small integer numbers. In his
treatise on arithmetic (Work V) he had

14Note that a minor third is equivalent to major sixth, but with the order of the notes reversed.
15 Vincenzo Galilei studied music theory in Venice under Zarlino, with whom he later had a dispute about music theory. Before,

it was though that in the same way that the ratio of lengths 2/1 of two vibrating strings yields the sound interval 2/1, so would
be the case for the the ratio of strings tensions for two strings of equal length, tuned an octave apart. Vincenzo has conducted an
experiment using hanging weights to show that the tension ration is not 2/1 as thought before, but 4/1 [17].
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explained that there are “no absurd, irra-
tional, irregular, inexplicable, or surd num-
bers” (see this edition, Vol. II B, p. 532,
also Vol. I, p. 23). For him a number like
27/12 is as good as any other, say 3/2. If
anybody should doubt that the sweet con-
sonance of the fifth could be compatible
with so complicated a number, then, says
Stevin, rather haughtily and aggressively,
he is not going to take pains to correct the
inexplicable irrationality and absurdity of
such a misapprehension. He repudiates the
Pythagorean values for the intervals (3/2
for the fifth, 9/8 for the second, 81/64 for
the major third, 4/3 for the fourth) on
the ground that they lead up to the ratio
256/243 for a semitone (the minor limma).
This, when subtracted from a whole tone
(9/8), leaves another semitone with a ra-
tio very close to 256/240. Stevin remarks
that this major semitone is all but a quar-
ter larger than the previous minor semitone
(the differences of 243 and 240 from 256 be-
ing 13 and 16 respectively). All semitones
having to be equal, the initial assumption
of 3/2 for the ratio of the fifth must be
wrong.

With the idea of dividing the octave into intervals
of the form 21/M established, another question was
raised of what should be the value of M . The fa-
mous physicist and mathematician Christian Huygens
(1629-1695) in his letter “Lettre touchant le cycle har-
monique” (1691) [19] and in “Novas cyclus harmon-
icus” (1724), together with Nicola Vicentino (1511-
1576)[20], has advocated the use of 31-tone system.

The choice ofM = 12 has not been absolute in non
western cultures. Persians divided their octave into 24
unequal intervals; Arabs into 16, but mostly used oc-
tave, fifth and quarter notes; Indians divided the scale
into 22 notes, but only used 7 intervals; Chinese – into
12 equal intervals, but used mostly pentatonic scale
(five particularly selected notes) [21]. In the modern
times, the topic of dividing the octave into more than
12 notes, termed microtuning, is an active subject of
research.

6 Twentieth Century Formal-

ized Music Theory

Musical ideas that were developed through history can
be formalized in mathematical language so as to aid in
harmonic and melodic composition. The key idea in
the theory I am about to present is that given a collec-
tion of notes that are voiced simultaneously (a chord),
we may count which intervals occur in it by looking
at the intervals between each pair of notes that make
this chord. If two different chords involve the same in-
tervals, they should sound similar. Thus, the passage
from one to the other should be a pleasing transition
to the ear.
Thus, given a chord, we could perform transforma-

tions on it without loosing its interval structure, and
we could create a sequence of similar-sounding yet dif-
ferent chords.
This process can be generalized to operate not just

on a single set of notes, but on a two dimensional array
of notes. The rows of the array can be thought of as
voices. Hence, as we sweep the array horizontally (left
to right), we play the notes in the array cells melod-

ically. As we slice the array vertically, we have the
notes that are executed simultaneously by all voices,
i.e. harmonicaly. The operations on such arrays, if
they are to preserve array’s musical content, must not
alter the total content in the columns and rows.
I will now delve into detail. We will be working

with the equal temperament scale with 12 notes. The
notes are represented with integers, with central C on
the piano keyboard denoted as 0, everything to the
right of it as increasing integers, and everything to the
left as decreasing integers. This is called a pitch-space.
Next, we group the pitches into equivalence classes, by
identifying the note X in all octaves to be the same.
(So that all C’s are 0, all D’s are 1, and so on). Thus,
we are working modulo 12. This is a “collapsed” pitch-
space, because it is kind-of folded back onto itself, and
the pitch-class space is isomorphic to the group Z12.
We call it pitch-class space, or pc-space for short. The
elements of the pc-space are denoted as ’pcs’.

6.1 Measuring Intervals

Given two ordered pitches a and b (not pitch-classes),
we define the interval between them as one minus
the other (b-a) (recall that we now represent pitches
with integers). By ordered pitches (as opposed to un-
ordered), we mean that one is played after the other
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Figure 2: The y-axis lists possible choices of M , the number of subdivisions of the octave. The vertical lines
cross at frequencies equal to rational numbers (just intonation) with small integer numerators and denomina-
tors. Notice that M = 12, M = 19 and M = 31 are good choices for M , because the equal tempered scale in
each case matches many notes in the just intonation. This graphic is taken from [22].
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in time16. Thus, the interval sign records the direc-
tion of change of pitch. However, if we are given two
unordered pitches a and b, we must subtract in both
directions, so that the “general” interval between the
two is +− (b− a).

A slight problem with the unordered scheme occurs
when we work in pitch-class space. If a and b are now
pcs (and not pitches), then +− (b− a) is ambiguous.
To see this, consider a = 3, b = 5. We have, −2,+2,
but −2 = 10. So which one should we take as the
value ? 10 or 2? To solve this problem, we introduce
notation icX where ic stands for interval class. We
always take the smallest positive value of the two: in
above example, we will take 2 vs. 10 and denote it
by writing ic{5, 3} = ic2, where ic{a, b} denotes the
interval between pcs a and b. Clearly, there are only
seven ics, ic0 through ic6.

6.2 Interval content of a pc-set

Now that we know how to compare two pcs, we may
consider the intervals between every pair of notes in a
set of pcs. Given such pc-set A = {a0, a1, . . . , an−1},
the interval class matrix T = [Tij ] of A is defined to
have elements Tij = ic{ai, aj}. In other words, this
matrix records all intervals that occur in pc-set A.
Note that this matrix is symmetric. Two pc-sets are
interval equivalent if they have the same interval-class
matrix.

The interval class vector of pc-set A denoted by
ICV (A) is a 7-tuple, (l0, l1, l2, . . . , l6), with lX equal
the numbers of times an interval of size icX occurs
in the interval class matrix below the diagonal (and
including the diagonal). Clearly, there may exist pc-
sets that have different interval class matrices, but the
same ICV vector (because information is lost during
the transition from the interval-class matrix to the
interval-class-vector). In such cases, we say that the
two pc-sets are Z-related.

6.3 Twelve Tone Transformations

We now define transformations on pc-sets. The trans-
position Tn of a pc-set A = {a0, a1, . . . , an−1} is a new
pc-set B = {b0, b1, . . . , bn−1} with Bi = Ai + n.

The multiplication transformation Mn is defined
similarly, but with Bi = Ai · n. Note that to cre-
ate a one-to-one mapping by multiplying numbers in
Z12

17 we need n to be relatively prime to the modu-
lus 12. Thus n can be 1, 5, 7 or 11. Now, if we ad-
mit negative values of n, then −5 = 7, and −1 = 11,
so that, essentially, M−1 and M5 suffices. Note that
Tn and Mm transformations can be cascaded. Clearly
MmMn(A) = Mmn(A). We also define operation of
inversion I by I = M−1, and with just M , the oper-
ation M5. In can be shown that any combination of
Tn’s, and I’s and M ’s can be written in one of the
following forms: Tn, TnI, TnM , or TMI.

Thus, we have operations M , Tn and I. These op-
erators are called Twelve Tone Operators (TTOs) and
they collectively form a group with T0 being the iden-
tity operation. As well, Tn and one or none of I or M
generate a subgroup.

Of the three operations, Tn and I do not change
the interval class content of their operand. Let G be
the group generated by those two operators. If two pc-
sets are related by a transformation in this group, then
they have the same equivalence class matrix, hence the
same interval class vector.

We define an equivalence relation on pc-sets, by
placing two pc-sets in the same equivalence class if
they are related by a TTO in the group G. We de-
note each such pc-set class with SC(i− j)[P ] where i
is the number of elements in the pc-set, j is the index
of the SC within the same value of i (as listed in Allen
Forte’s SC table, see [23]), and P is a representative
pc-set of the SC, called the prime form. For example,
there are six different pc-sets classes consisting of two
notes: SC(2 − 1)[01], SC(2 − 2)[02], SC(2 − 3)[03],
SC(2− 4)[04], SC(2− 5)[05], SC(2− 6)[06]18.
Another measure of a pc-set that is preserved by

the TTOs in G is its invariance vector IV (A). This
vector is an 8-tuple, where the first four values show
for how many different values of n the pc-set is invari-
ant under transformations Tn, TnI, TnM , and TnMI,
respectively. The last four entries are similar. They
ask, for how many different values of n does the pc-set
map, under the above transformations, into its com-
plement19.

16This is not very different from the earlier definition of interval in the Greek sense, for we are implicitly taking the base 2
logarithm of the ratio and multiplying the result by M : Mlog(2b/M/2b/M ) = b− a.

17Equivalent notation, since we are working modulo 12.
18Allen Forte, an atonal music theorist, has categorized all SC’s[23].
19The complement is taken with respect to Z12, i.e. the complement of {1,3,7} is {0,2,4,5,6,8,9,10,11}.
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6.4 Prime Form Algorithm

Given a pc-set, we want to determine to which SC it
belongs. The following algorithm transforms a pc-set
to its prime form (and it is the prime-form that’s listed
in the SC table, and hence uniquely identifies its SC).

1 START: select pc-set P = {p0, p1, . . . , pn1
}.

2 n := |P |.

3 Arrange P and I(P )20 in ascending order of pc
number.

4 q := 1.

5 Produce the set S of pc-cycles21 comprised of
all rotations of P and I(P ) (S will have 2 · |P |
members).

6 Find the subset S′ of all pc-cycles C in S where
i < C0, Cn−q >22 is minimal.

7 S := S′ (delete all members of S not in S ′).

8 If S has only one member, go to 12.

9 If q = n, discard all (Tn-related) members of S
except one, and go to 12.

10 q := q + 1.

11 Go to 6.

12 Transpose the (sole) member of S so it begins on
0.

13 END. the resulting pc-cycle is called the prime
form of P .

6.5 Chains of SCs

Here we will create a sequence of pc-sets that are in
different SCs, but with a special property. Take the
union of any two adjacent pc-sets in this sequence,
and it will always remain in the same SC!.
First we must introduce a concept of a partition

of a pc-set. A two-partition of a pc-set is any way of
dividing it into two non-intersecting parts. The two
parts can be considered complements with respect to

the pc-set. Thus, if P = {01347}, the following are all
partitions, {01|347}, {07|234} and so on. The general
notation is P = P1|P2.
The chain of SCs therefore will look like this:

P1|P2|P3| . . .

Thus, in a chain of SCs of our interest, we require
Pi|Pi+1 to be in the same SC as Pi+1|Pi+2 for all i.
(Note that we are chaining SC’s with k elements, but
every adjacent pair of k-element SCs are in the same
2k-element SC. In the example below we have k = 3).

We also define operation of partition reversal
R(P1|P2) = P2|P1.
Execution of this algorithm requires preparation of

a list of all partitions of the prime-form of the SC that
we would like to have as the main theme of the chain.

1 START: select initial two-partition from list.
Call it the current chain partition (CCP).

2 The chain begins with CCP1|CCP2.

3 Let BEG := CCP1.

4 Select another two-partition M from the list,
where M1 and M2 is equivalent under a TTO
F to CCP2. (F is Tn or TnI).

5 If F (M2) = CCP2 the let NEW := R(M); else
let NEW :=M .

6 Transform NEW under F . F (NEW ) is called
the new chain partition (NCP).

7 The chain continued:
(. . .)CCP1|CCP2|NCP1|NCP2

8 Let CCP := NCP

9 If CCP2 is not equal to BEG, go to step 4; else
stop—the chain is complete.

Notice that the stop condition is to eventually produce
a loop, and come back to the beginning. This kind of
“round” produces a sense of completeness.

20Recall that inversion I = M
−1

21A pc-cycle (pccyc for short) is an ordered list of pcs, that loops back on itself. Unlike conventional cycles in group theory, the
starting element in a pc-cycle matters, so that (a, b, c) and (c, a, b) are different pccycs, although they are related by rotation.

22i < a, b >= b− a, that is difference between two ordered pitches (in time)
23Note that here A and B stand for numbers 10 and 11 respectively, and not for the notes ’la’ and ’ti’ as in conventional music

theory.
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If we run the above algorithm on SC(6 −
42)[012369] with initial partition CCP := 012|369.
The resulting chain is23,

012|369|0AB|147|89A|B25|678|903|

456|7A1|234|58B|012|369

6.6 More...

This theory continues into the study of the group
structure of TTOs, more in depth study of intervals,

transformations of arrays, and further classification of
SCs into K and Kh complexes. See [23].

7 Conclusion

Like mathematics, music is constantly evolving. And
as history shows, music and mathematics have always
been companions. Perhaps the comment by the math-
ematician J. Sylvester describes this relationship best,

Mathematics is the Music of Reason.
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