
In Memoriam: Paris C. KanellakisOur colleague and dear friend, Paris C. Kanellakis, died unexpectedly and tragically on De-cember 20, 1995, together with his wife, Maria-Teresa Otoya, and their beloved young children,Alexandra and Stephanos. En route to Cali, Colombia, for an annual holiday reunion with hiswife's family, their airplane strayed o� course without warning during the night, minutes beforean expected landing, and crashed in the Andes.As researchers, we mourn the passing of a creative and thoughtful colleague who was respectedfor his many contributions, both technical and professional, to the computer science researchcommunity. As individuals, we grieve over our tragic loss|of a friend who was regarded with greata�ection, and of a happy, thriving family whose warmth and hospitality were gifts appreciatedby friends around the world. Their deaths create for us a void that cannot be �lled.Paris left un�nished several projects, including a paper on database theory intended for thisspecial issue of Computing Surveys, to be written during his holiday visit to Colombia. Instead,we wish to o�er here a brief biography of Paris, and a description of the research topics thatinterested Paris over the last few years, together with the contributions that he made to theseareas. It is not our intention to outline de�nitive surveys or histories of these areas, but ratherto honor the signi�cant contemporary research of our friend.Paris was born in Greece in 1953 to Eleftherios and Argyroula Kanellakis. In 1976, he receivedthe Diploma in Electrical Engineering from the National Technical University of Athens; hisundergraduate thesis was titled Easy-to-test Criteria for Weak Stochastic Stability of DynamicalSystems, advised by Prof. E. N. Protonotarios. Paris continued his studies at the graduate level inElectrical Engineering and Computer Science at the Massachusetts Institute of Technology, wherehe received his M. Sc. in 1978, submitting the thesis Algorithms for a Scheduling Application ofthe Asymmetric Traveling Salesman Problem, supervised by Profs. R. Rivest and M. Athans,followed by his Ph. D. in 1982; his doctoral dissertation was On the Complexity of ConcurrencyControl for Distributed Databases, supervised by Prof. C. H. Papadimitriou.In 1981, Paris joined the Computer Science Department of Brown University as assistantprofessor. He was promoted to associate professor with tenure in 1986, and to full professor in1990. Intermittent with his appointment at Brown, Paris also held several temporary positions,including posts at the IBM Watson Research Center, the MIT Laboratory for Computer Science,GIP Alta��r, and INRIA Rocquencourt. He served as an associate editor of the new journalConstraints, as well as Information and Computation, ACM Transactions on Database Systems,SIAM Journal of Computing, Theoretical Computer Science, and Journal of Logic Programming.Paris served in addition as program committee member, program chair, and invited speaker atmany of the prominent research conferences in computer science.We take this opportunity to present some of Paris' contributions to database theory, includ-ing deductive, object-oriented, and constraint databases, as well as his work in fault-tolerantdistributed computation and in type theory. In each of these areas, we recognize research contri-butions that were not merely examples of good problem solving, but also examples of insightfulproblem formulation. 1



In synchrony with his technical ability in solving problems, Paris added a mature editorialvoice which, by proposing new kinds of research questions, and answering some of them in noveland sometimes surprising ways, helped to change our perceptions of what was technically sig-ni�cant. In several cases|for example, in deductive databases and type theory|Paris broughtthe tools and techniques of complexity theory and algorithmics to analyze the e�ciency of con-structs in programming language design. These themes were found again in the area of constraintdatabases, an area he played a major role in initiating, while guiding its development via soundand feasible algorithmic principles. In distributed computing, Paris advanced new computationalframeworks intended to align algorithmic paradigms with salient aspects of realizable systemarchitectures. In object-oriented databases, Paris worked to build a semantic foundation thatprovides an implementation-independent meaning for these systems, much in the same spirit thatthe relational model provides an implementation-independent meaning for relational databases.We recognize in all this work Paris' desire to understand better the theoretical foundations ofpractical systems, to study them with precise analytical tools, and to use the results to improvethe functionality and performance of these systems.The authors of this technical obituary feel honored by the privilege they had in collaboratingwith Paris on many of these projects. In mourning his tragic death, we miss his technical facility,his broad knowledge, his insight, his commitment, and his humor. To write a research paper withParis was also an opportunity to observe his indefatigable attention to detail, and to engage invigorous debate with his editorial voice. To write this obituary allowed us to to feel his voiceonce more, to understand better what a good scientist he was, and to appreciate his uncommondecency and kindness. It is our great loss that we will not hear his voice again.1 Deductive DatabasesParis Kanellakis was a major contributor to the theoretical foundations of deductive databases.It has been recognized since the early 1980s that �rst-order database query languages such asSQL are lacking in expressive power. This insight lead to the investigation of many higher-orderquery languages, in particular Datalog, the language of logic programs without function symbols.A canonical use of Datalog is to compute transitive closure, where we think of the database as adirected graph: path(X; Y ) :{ edge(X; Y ):path(X; Y ) :{ path(X;Z); path(Z; Y ):In this example, we take edge to be an extensional database (EDB) predicate, representingbasic facts stored in the database. For example, edge(1; 5) is an EDB fact stating that there isan edge between vertices 1 and 5. The intensional database (IDB) predicate path represents factsdeduced from the database via the logic program above: the �rst rule says every directed edgeforms a path, and the second rule tells how paths can be joined together. We can now query, forinstance, path(1; 7) or path(2; V ) to determine, respectively, whether there is a path from vertex1 to vertex 7, or what vertices V are connected to vertex 2 by a path. The path facts are deducedfrom the edge facts, hence the name deductive databases.Paris' work addressed the problem of �nding e�cient evaluation methods for Datalog queries.He viewed the challenge of deductive databases as the need to combine the technology of logicprogramming with the e�ciency of database technology, providing a concrete step towards a2



new generation of computing. The focus of his research in this area was in identifying classes ofDatalog queries that can be evaluated e�ciently.Datalog and Parallel Computation: Paris investigated what kind of Datalog queries canbe sped-up by massive parallelism [CK86, Kan88]. He identi�ed speed-up with the complexityclass NC, which consists of the problems that can be computed in polylogarithmic time throughthe use of polynomially bounded hardware. Problems in NC are exactly those with a greatdeal of potential parallelism. In contrast, signi�cant speed-ups cannot be achieved for PTIME-complete problems, unless NC=PTIME, which is widely believed not to be the case. Thus,PTIME-complete problems are often called inherently sequential.Paris proposed to measure the computational complexity of Datalog programs both by theirtime complexity as well as by their database complexity, which measures the number of calls theDatalog query engine makes to the underlying relational database system. He proved that thereare Datalog queries that are hard to evaluate in parallel, regardless of which complexity measureis being used. For example, Paris showed that the queryreach(X) :{ reach(Y ); reach(Z); edge(Y;X); edge(X;Z); edge(Z; Y )is PTIME-complete and, furthermore, its database complexity is provably super-polylogarithmic.The latter bound is signi�cant, since it does not depend on whether NC is a proper subclass ofPTIME. Paris also proved a gap theorem for the database-complexity measure. He showed thatthe database complexity of every Datalog query is either O(1) or 
(logn); surprisingly, there isnothing in between.Bounded vs. Unbounded Queries: It is clear that recursive applications of Datalog rulesmake queries hard to evaluate. In particular, Datalog queries whose database complexity is inO(1) can be evaluated in NC; such queries are called bounded. It is known that a Datalog queryis equivalent to a �rst-order query i� it is bounded. This makes it highly desirable to be ableto identify which Datalog queries are bounded. Unfortunately, the distinction between boundedand unbounded queries can be quite subtle. For example, the querybuys(X ;Y ) :{ likes(X ;Y ):buys(X ;Y ) :{ trendy(X); buys(Z ;Y ):is bounded, while the querybuys(X ;Y ) :{ likes(X ;Y ):buys(X ;Y ) :{ knows(X ;Z);buys(Z ;Y ):is unbounded. This subtlety is not accidental; it is known that the problem of testing whether agiven Datalog query is bounded or not is undecidable.Paris was engaged in a long-term project whose goal was to delineate the boundary betweenthe decidable and undecidable for classes of Datalog queries [CGKV88, AK89, HKMV95], thatis, to identify maximal classes of Datalog queries whose boundedness problem is decidable andminimal classes of Datalog queries whose boundedness problem is undecidable.One way of classifying Datalog programs is by the arity of their IDB predicates. For example,the path and buys queries in the examples above are binary, while the reach query is unary.Together with colleagues, Paris was able to show that the boundary between the decidable andthe undecidable lies between the unary and the binary. More precisely, the boundedness problemfor unary Datalog queries is decidable [CGKV88], while the boundedness problem for binaryDatalog queries in undecidable [HKMV95]. 3



2 Object-Oriented DatabasesIn 1988-89, Paris visited INRIA Rocquencourt, where he held a joint position in the DatabaseResearch Group and in the Alta��r R&D Group. At that time, object-oriented database systemswere emerging from research venues and into product development with start-up companies suchas Alta��r. The new technology, however, lacked the formal foundations of the relational model.Paris' goal, while participating in development e�orts, was to bridge this gap.While at Alta��r, Paris had a major inuence on several aspects of the O2 system, bringing histheoretical expertise to a practical project. His most visible impact was on the data model: hehelped formulate the O2 data model, and provided a �nal theoretical framework for it. He wasalso the lead editor of the de�nitive monograph [BDK92] documenting the relevant design andanalysis of this multi-year research and development e�ort.One of Paris' ambitions was to provide sound theoretical foundations to database systems. Hestrongly believed that understanding the functionalities of these systems, providing formal modelsfor them, and �nding connections with already mature theories were the keys to developing bettersystems. In this enterprise, Paris could rely on a wide culture in theoretical computer scienceand mathematics, as well as a strong intuition for practical issues.Paris developed an object-based database model in a collaborative work [AK89, AK91]. Thestructural part generalized most of the known complex-object data models. The main contri-bution is the operational part of the data model, the query language IQL, which uses objectidentities (oid's) for three critical purposes: (1) to represent data-structures with sharing andcycles, (2) to manipulate sets, and (3) to express any computable database query. The lan-guage IQL can be statically type checked, can be evaluated bottom-up and naturally generalizesmost popular rule-based database languages. The model was also extended to incorporate typeinheritance, without changes to the language.The main purpose of this work was to capture formally the essence of object database applica-tion programming, and to highlight the new dimension brought by object identity with regard toold questions such as duplicate elimination or query completeness. In particular, Paris observedthat standard proofs of query completeness (e.g., [CH85]) did not work as usual in this settingbecause of the presence of oid's. He showed that an analogous value-based data model could befounded on regular in�nite trees, thereby capturing fundamental aspects of object identity thathad been overlooked by previous researchers.Paris was also concerned with the essential novelty of programming applications in an object-oriented paradigm. In [AKRW94, HKR94] he investigated, with collaborators, a simple program-ming formalism for object-oriented databases, namely method schemas. The syntax is based onan application of program schemas, using a hierarchy of classes, method composition, recursionvia function calls and name overloading. The semantics is based on term rewriting with latebinding.Paris and colleagues concentrated on understanding the problem of consistency checking, i.e.,of testing at compile time whether in some interpretation, a method invocation would lead to anerror. Not surprisingly, the problem is undecidable in general. Paris studied in depth decidablecases such as monadic schemas (methods having arity 1) or recursion-free schemas (absence ofcycles in the method dependence graph). Some surprising consequences of covariance, a standardrestriction imposed on method de�nitions, were demonstrated: for an important class of monadic,recursion-free schemas, consistency checking is complete for NLOGSPACE, whereas it is completefor DLOGSPACE if covariance is also imposed.4



Paris was convinced that object-oriented databases were an important technological step,but that they needed to rely on previously developed theories and techniques. He viewed hismore recent work on type theory (see Section 5) as part of a general program to provide formalfoundations for database programming languages.3 Constraint DatabasesParis was one of the founders of the area of Constraint Databases [KKR95]. While visitingthe IBM T. J. Watson Research Center, he was shown a demonstration of the CLP(R) system.This system is an instance of the CLP(X) framework, an extension of logic programming inwhich rules contain, besides normal terms, constraints from a domain X. CLP(R), in which rulescontain constraints from the domain of real numbers, uses a combination of lazy evaluation andan appropriate constraint solver, together with standard techniques from logic programming.Paris immediately wondered whether a database theory could be developed for such systems, byanalogy with the way deductive databases were inspired by logic programming.The direct consequence of this idea was his collaborative work on Constraint Query Languages[KKR95]. A class of database models and query languages was de�ned that could be instantiatedby speci�c constraint domains, similar to the CLP(X) framework. The basic idea was to replacethe notion of tuple in a relational database by that of a generalized tuple, i.e., a conjunctionof constraints. A relational tuple (a1; : : : ; an), for example, can be regarded as a special caseof a generalized tuple, i.e., (x1 = a1) ^ � � � ^ (xn = an). By choosing more powerful classes ofconstraints, one can represent potentially in�nite sets of points in a compact way. For example,a rectangle with corners at (a; b) and (c; d) can be represented by the generalized tuple (a � x �b) ^ (c � y � d). Other example are linear arithmetic constraints, which can be used to modelmany spatial applications (e.g., GIS), and polynomial constraints, which can be used to describemore complex spatial objects, such as those in CAD systems.Of course, just extending the database model would be not be very interesting unless wewere able to query the database. Paris realized that for the model to be of interest we wouldneed query languages that were not just decidable, but of low complexity. This research goal wasaddressed in [KKR95] for dense-order constraints, i.e., inequalities x < y where < is a dense order(e.g., the rationals). Some results in this direction have also been obtained for more powerfulquery classes such as linear constraints and polynomial constraints.Paris' original paper showed that the �rst-order query language with dense-order constraintscould be evaluated in LOGSPACE. Subsequent joint work [KG94] improved these bounds toAC0. One consequence of this result was to resolve, for dense-order constraints, a problem thatParis had proposed for �rst-order constraint query languages in general: whether the PARITYquery|is the cardinality of a (�nite) database even or odd?|is expressible in such languages. Hisconjecture was that the answer is negative, as is well-known to be the case for relational databases.This question turned out to be a very di�cult: for polynomial constraints the negative resultwas only obtained recently [BDLW96] using sophisticated techniques from non-standard modeltheory.The AC0 result referred to above was obtained by de�ning an algebra for dense-order con-straints and then analyzing its complexity. In one of his very last papers, [GK96], Paris extendedthis work and studied algebras for constraint databases in more detail. This research included fur-ther work on dense-order constraints (including update issues) and linear arithmetic constraints.In the latter case, he de�ned a particularly promising algebra for 2-variable constraints|for5



example, temporal constraints.One of Paris' goals was to include recursion (e.g., transitive closure) in the model. Unfortu-nately, languages more powerful than dense-order constraints were not closed under recursion.For example, if R(x; y) contained the generalized tuple y = 2x, the transitive closure of R wouldhave to contain all tuples of the form y = 2nx, for n � 1. On the other hand, it was possible towrite recursive programs that did not have this problem, intuitively by ensuring that the rulesone wrote did not create new objects. De�ning such a notion in a precise way was an abidinginterest of Paris'|unfortunately, it remained an uncompleted project.Paris was always concerned about the practical side of the �eld, and was aware of the risk ofit becoming a theoretical exercise with limited practical value. From the very beginning he wasinterested in the question of appropriate index structures for constraint databases, i.e., how tostore constraints so that they could be accessed e�ciently. He spent an extended visit to IBMstudying the state of the art in index structures for spatial databases, and how applicable theywere to constraints. He was immediately struck by the contrast between the elegant combinationof theory and practice in the original B-tree paper, and the lack of such an analysis for spatialindex structures. The result of this study was the paper [KRVV94], proposing a data structurefor indexing constraints on one attribute. This index structure has optimal worst-case storageand query performance, and optimal amortized insert time (i.e., averaged over a sequence ofinserts), with performance very close to that of the B-tree. By studying the techniques thathe had used for indexing constraints [RK95], Paris was also able to develop index methods forobject-oriented databases, and at the time of his death he was investigating their application totemporal databases.4 Fault-Tolerant Parallel ComputationParis Kanellakis, among other researchers, sought to bridge the gap between abstract models ofparallel computation and realizable parallel architectures. The parallel random access machine(pram) model attracted signi�cant attention, and numerous e�cient parallel algorithms weredeveloped for the model. The pram model elegantly combines the power of parallelism and thesimplicity of the random access machine (ram) model. Most parallel algorithms require a fault-free environment, where any unreliability of processors, interconnections, or synchronizationseither eliminate e�ciency, or result in incorrect computation. Paris proposed a formally de�nednotion of robustness that combines fault-tolerance and e�ciency, and he led the developmentof deterministic parallel algorithms that remain e�cient in the presence of arbitrary dynamicprocessor failure patterns. This work and relevant open problems were recently summarizedin [KMS94, KS94].Robust computation: The ultimate goal of this reasearch is the synergy between the speed-uppotential of parallel computation and the reliability potential of distributed computation. Parisinvestigated fault models and parallel computation models where it is possible to achieve algo-rithmic e�ciency (i.e., speed-ups close to linear in the number of processors) despite the presenceof faults. Such combinations of fault and computation models illustrate constructive trade-o�sbetween reliability and e�ciency. This trade-o� exists because reliability usually requires intro-ducing redundancy in the computation in order to detect errors and reassign resources, whereasgaining e�ciency by massively parallel computing requires removing redundancy from the compu-tation to fully utilize each processor. Even allowing for some abstraction in the model of parallelcomputation, it is not obvious that there are any non-trivial fault models that allow near-linear6



speed-ups, especially considering the generally intimidating impossibility results for distributedand parallel computation. Thus it was rather surprising when Paris demonstrated in collaborativework [KS92] that it is possible to combine e�ciency and fault-tolerance for many basic algorithms,expressed as concurrent-read concurrent-write (crcw) prams, in a fault model [KS92] allowingany pattern of dynamic fail-stop processor errors, as long as one processor remains alive. Theapproach and techniques pioneered by Paris in his work were shown to be readily extendible toall crcw prams. In e�ect, any pram algorithm can be made robust by e�ciently simulating afault-free machine on a fault-prone one. Papers by other researchers followed, pursuing similarproblems in related shared-memory and message-passing models. It was also demonstrated byParis, in collaborative work, that although optimal simulations are possible in some models, suchoblivious simulations are not necessarily as e�cient as \handcrafted" robust algorithms, e.g., forthe all-important pointer doubling and parallel pre�x algorithms [KS94].Paris and colleagues extended the fault model to include processor restarts [KS91], arbitraryinitial memory initialization [KS94], and restricted memory-access patterns through controlledmemory access [KMS95].Algorithms and lower bounds: A key primitive in the above work is the Write-All opera-tion [KS92], de�ned as follows: using P processors, write 1s into all locations of an array of sizeN , where P � N . When P = N this operation captures the computational progress that canbe naturally accomplished in one time unit by a pram. Iterated Write-All forms the basis forthe algorithm simulation techniques. Therefore, improved Write-All solutions lead to improvedsimulations of all parallel algorithms. Under dynamic failures, e�cient deterministic solutions toWrite-All, i.e., increasing the fault-free O(N) work by small polylog(N) factors, are non-obvious.The �rst such solution, proposed by Paris in joint work [KS92], was an algorithm having worst-case work bound O(N + P log2N= log logN).Memory-access concurrency is a major source of available redundancy in parallel algorithms,and deterministic robust (i.e., e�cient and fault-tolerant) computation is impossible when concur-rent writes are excluded [KMS94, KS92]. Paris believed that it should nevertheless be possible tolimit the signi�cant memory-access concurrency that was assumed by existing robust algorithms.Again, surprisingly, in [KMS95] he showed, with his colleagues, that concurrent writes are nec-essary only when faults actually occur and not in the anticipation of possible faults. Write-Allalgorithms can be constructed so that they can be executed on a fault-free exclusive-write ma-chine, while on a fault-prone concurrent-write machine the number of concurrent writes is exactlythe number of processor failures encountered during the execution.The Write-All algorithms for the fail-stop model have optimal ranges of processors for whichthe work is O(N). Optimality is achieved by taking advantage of parallel slackness. Are thereoptimal algorithms for the full range of processors N = P? Paris et al. showed that suchalgorithms do not exist [KS92]: even for the models with instant memory snapshot and arbitrarilypowerful instruction set, an adversary can be constructed that will force anyWrite-All algorithmto do 
(N logN= log logN) work. For memory snaphosts this bound is tight|there is a simplealgorithm with a matching upper bound [BKRS95].While the current Write-All lower/upper bound gap is relatively small for the fail-stop modelwith dynamic failures, a much larger gap remains for the models with restarts and asynchrony. Itwas conjectured that for Write-All there is a quadratic lower bound in this case. Together withseveral colleagues [BKRS95], Paris constructed the �rst subquadratic deterministic algorithmwith work O(N �P log 32 ). In the same paper a 
(N logN) lower bound was shown for the model.The bound stands even if memory snapshots are allowed, but in this case there is also a matchingupper bound. 7



Paris considered the remaining gaps between lower and upper bounds to be interesting openproblems, and intended to pursue their resolution. Left un�nished was a jointly-authored mono-graph bringing together the latest results in this area.5 Type theoryParis Kanellakis made fundamental contributions to the algorithmic analysis and complexity-theoretic understanding of several important topics in programming language design, including�rst- and higher-order uni�cation, type inference for ML-like programming languages, and ex-pressiveness in the typed lambda calculus. Paris' interests in these areas were natural extensionsof his earlier work in logic programming and database theory. The work on these topics com-bined a technical expertise with a careful, understated iconoclasm: he wanted, and succeeded, inchanging his colleagues' perceptions of the relevant states of the art.First order uni�cation: Uni�cation is a ubiquitous building block in implementations of sophis-ticated programming languages. It is, for example, the workhorse of logic programming engines,and an essential component of compile-time type analysis. The dual emergence in the 1980s oflogic programming and parallel computation, in both research and development, suggested tomany computer scientists that parallel uni�cation could greatly enhance the performance of logicprogramming systems. In this context, Paris' collaborative result [DKM84] that �rst-order uni-�cation is complete for PTIME|in other words, as hard as any polynomial-time problem|wasan interesting technical result with an important editorial message.1The theorem implied that uni�cation was a formidable, if not essential, bottleneck in logicprogramming: any research program that succeeded in parallelizing uni�cation|say, to runin sub-polynomial time|would have also succeeded in equivalently parallelizing every knownpolynomial time algorithm. Because of this seemingly insurmountable (or as most researchersbelieve that PTIME 6= NC, impossible) hurdle, serious attempts to parallelize uni�cation werelargely put aside.The key idea in this proof of the \linear nature" of uni�cation, due to Paris, is that verysimple uni�cation problems can be constructed whose solution is isomorphic to the computationof Boolean logic gates: Boolean values are simulated by pairs of terms that are forced to unifyi� the related value is \true." Since PTIME can be captured by certain easily-constructedpolynomial-sized circuits, this technology permitted any decision problem solvable in polynomialtime to be e�ciently transformed into a uni�cation problem. These ideas were e�ectively reusedto analyze the complexity of type inference.Complexity of type inference: Type checking is an important safety feature of programminglanguages ensuring that no run-time type errors cause programs to \go wrong" via type errors,e.g., adding pointers and strings. Type inference incorporates type checking with automaticcompile-time mechanisms that deduce the types of all run-time data. Uni�cation is essential tomany type inference algorithms, since �rst-order terms can characterize data types; terms arebuilt via functions like \pair," \list," or \function" over constants such as \integer," \boolean,"or type variables having values constrained by term equations.Many functional programming languages (e.g., ML, Haskell, Miranda) based on typed lambdacalculus support type inference in the presence of so-called parametric polymorphism. In simplerterms, these combined features enable programmers to code implementations of abstract data1The paper in which this result appeared was edited by the founding editor of the Journal of Logic Programming,J. Alan Robinson, and was published as the very �rst article in that journal.8



types (trees, stacks, queues, etc.) once, and \reuse" the code on data of di�erent types, without theobligation of adding type annotation at each use. By comparison, other languages with compile-time type checking|the canonical example being Pascal|require a procedure to be repeatedlycoded for each data type at which it is used; the type checker requires redundant source code,each copy with di�erent type annotation, even though identical target code is generated for eachcopy.Although claims had been made in the research community that the ML type inferencemechanism was e�cient, Paris believed that such claims were unfounded. In a striking joint paper[KM89], the simpler problem of recognizing type-correct ML programs was shown to be PSPACE-hard (i.e., as hard as any problem that can be solved in polynomial space), and furthermorecontained in EXPTIME. This result was both counterintuitive and surprising. The fundamentaltechnology was extended via additional insights in another joint work [KMM91], showing theproblem to be complete for EXPTIME.The proof technology used in these theorems was a direct descendant of Paris' earlier workon uni�cation. The additional type exibility introduced by ML polymorphism allows the sim-ulation, via uni�cation, of more powerful complexity classes. In Paris' joint paper [KM89], MLpolymorphism was used as an iterative mechanism to simulate quanti�er elimination for Quan-ti�ed Boolean Formulas,2 resulting in the PSPACE-hardness bound, and in [KMM91] the sametools were enhanced to simulate arbitrary exponential-time computation. Later sophisticatedextensions of his idea yielded signi�cant lower bounds for other typed lambda calculi.Expressibility: Paris was also interested in characterizing complexity classes (AC0, PTIME,PSPACE, EXPTIME, EXPSPACE,...) by naturally de�ned classes of typed lambda terms, mir-roring earlier work that had been done in the database community on logic and expressibility[Imm86, Var82]. Lambda calculus is the underlying theory of all functional programming lan-guages, though its roots are found in the modern development of mathematical logic. Paris' workin this area was designed to provide foundations for functional database query languages, andalso to rehabilitate the simply typed lambda calculus from a certain computational disrepute.Interest in higher-order typed lambda calculi had been motivated in part by negative resultsthat the only expressible functions on the canonical type for integers were the extended polynomi-als, made from addition, multiplication, and conditional equality with zero|noticeably absent isexponentiation, subtraction, and integer equality. These results suggested that the calculus wasno good for useful computation.Paris wanted to show that this was not the case: all feasible computation was comfortablyfound within the simply typed lambda calculus. The syntactic and (especially) semantic con-tortions of higher-order calculi, of certain mathematical interest, could then be shown to becomputationally unnecessary. The means to this demonstration was a shift in the computa-tion paradigm: instead of considering numerical computations, Paris suggested coding databasequeries. His suggestion was inspired by a lambda calculus encoding [Mai92] of the decision prob-lem for higher-order logic, which Paris proposed to extend to an encoding of the complex objectalgebra [AB88], a powerful database query language. We briey discuss some relevant details.Quanti�ed Boolean Formulas allows quanti�cation only over Booleans, but can be generalizedby allowing quanti�cation over iterated powersets of Booleans, and replacing propositional vari-ables by prime formulas x 2 y, where x and y are typed to range over the appropriate powerset.This decision problem for higher-order logic has nonelementary complexity (not solvable in any2Given a closed propositional formula F where each variable X is 8- or 9-bound, is F true under the naiveinterpretation? 9



�xed stack of exponentials), and can be used to show that deciding equivalence of two typedlambda terms is nonelementary [Mey74, Sta79]. In the related complex object algebra, quanti�-cation ranges over atomic constants, sets, and tuples, expressing exactly the generic elementarydatabase queries that are computable in some �xed stack of exponentials. By implementing thecomplex objects algebra in the simply typed lambda calculus, the data complexity of logicalqueries, studied in [Imm86, Var82], could be replaced by a procedural variant. In this proceduralimplementation, the computational power of a query is measured by its integer rank, describingthe degree of its higher-order functionality. In joint work, Paris began implementation of thisresearch program [HKM93, HK94], where PTIME was given a precise characterization via queryterms of �xed rank.In further sophisticated extensions of this functional framework for descriptive computationalcomplexity, Paris succeeded, again in collaborative work, in providing syntactic characterizationsfor many standard complexity classes [HK95]. These results rely on complex query evaluationstrategies that use e�cient data structures, and avoid the redundancies incurred by more usualreduction strategies in the lambda calculus. At the time of his death, Paris was consideringthe use of this technical machinery in providing an alternative, and perhaps more compelling,treatment of the issues addressed by the area of optimal reduction in the lambda calculus.Serge Abiteboul,Stanford University andInstitut National de Recherche en Informatique et Automatique (INRIA)Gabriel M. Kuper,European Computer-Industry Research Centre (ECRC)Harry G. Mairson,Brandeis UniversityAlexander A. Shvartsman,Massachusetts Institute of TechnologyMoshe Y. Vardi,Rice University
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